Heterobimetallic Complexes with a Propynylidene C₃-Bridge: General Synthetic Routes to Bimetallic Ethynylcarbene Complexes

Cornelia Hartbaum, Gerhard Roth, and Helmut Fischer*

Fakultät für Chemie, Universität Konstanz, Postfach 5560 M727, D-78434 Konstanz, Germany

Received November 15, 1996

Keywords: Heterobimetallic complexes / Carbene complexes / Alkynes / Coupling reaction / Bridging ligands

Sequential reaction of the dimethylamino(trimethylsilylethynyl)carbene complexes $[(CO)_5M'=C(NMe_2)C\equiv CSiMe_3]$ [M' = W (1a), M' = Cr (1b)] with KF/THF/MeOH, *n*BuLi and transition metal halides, $[XML_n]$, affords heterobimetallic propynylidene complexes of the type $[(CO)_5M'=C(N-Me_2)C\equiv CML_n]$ $[ML_n = Ni(PPh_3)Cp (4a, b), Ni(PMe_2Ph)_2-$ (Mes) (Mes = 2,4,6-C₆H₂Me₃) (5a), Rh(CO)(PPh_3)₂ (6a), Fe-(CO)₂Cp (7a, b)]. In contrast, reaction of 1a with MeLi · LiBr and $[IFe(CO)_2Cp]$ yields the novel *N*-metallated complex $[(CO)_5W=C\{N(Me)Fe(CO)_2Cp\}C\equiv CSiMe_3]$ (8a). The complexes $[(CO)_5M'=C(NMe_2)C\equiv CML_n]$ [ML_n = Fe(CO)₂Cp (7a, b), Ru(CO)₂Cp (10a, b), Ru(CO)(PPh_3)Cp (11a), Mn(CO)₅

(12a), Re(CO)₅ (13a)] are accessible by Pd-catalyzed coupling of the C-stannylated carbene complexes $[(CO)_5M'=C-(NMe_2)C\equiv CSnBu_3]$ (9a, b) with $[XML_n]$. The related monomethylaminocarbene complexes $[(CO)_5M'=C(NHMe)C\equiv CSnBu_3]$ (16a, b), obtained by stannylation of $[(CO)_5M'=C(NHMe)C\equiv CH]$ (15a, b) with Bu_3SnNEt_2, react with $[IFe(CO)_2Cp]$ to give the bimetallic complexes $[(CO)_5M'=C(NHMe)C\equiv CFe(CO)_2Cp]$ (17a, b). The complexes 4a, 5a, 7a and 10a were characterized by X-ray structural analyses. The spectroscopic and structural data suggest that the two metal centers in 4–7, 10–13 and 17 interact only weakly.

Introduction

Bi- and polynuclear transition-metal complexes containing unsaturated conjugated carbon bridges have recently attracted considerable interest, since electronic communication between the metal centers should lead to unusual physical and chemical properties^[1]. Carbon-bridged bimetallic π -conjugated complexes of the type $[(L')_m M'C_x ML_n]$ were for example proposed as a new class of one-dimensional molecular wires^[1d]. Binuclear complexes with different metal ligand end groups at a conjugated π -system should exhibit second-order nonlinear optical (NLO) properties.

To date, binuclear complexes with an even number of carbon atoms linking the metal centers have been more readily accessible than those with an odd number of carbon atoms^[1a]. For C₃-bridged binuclear complexes, $[(L')_mM'[C_3R_y]ML_n]$ (y = 0-2), several types are conceivable (Scheme 1: see A-H).

The first complex of type A/B was reported by Gladysz et al. in 1993^[2] [(L')_mM' = Cp*(NO)(PPh₃)Re, $ML_n =$ $Mn(CO)_2Cp^+$]. Only recently, Templeton et al.^[3] also prepared some C₃-bridged molybdenum and tungsten complexes.

Only one example of a type-C complex is known, namely the anionic $\{[W]C(CH)C[Mo]\}^ \{[W] = W(CO)_2Tp', [Mo] = Mo(CO)_2Tp', Tp' = tris(pyrazolyl)borate\}, gener$ $ated by deprotonation of <math>[W] \equiv C(CH_2)C \equiv [Mo]^{[3]}$ with KOtBu. Examples of types **D**/E are also very scarce. Gladysz et al.^[2,4] synthesized a few complexes by reaction of $[Cp^*(NO)(PPh_3)ReC \equiv C^-Li^+]$ with $[L_nM-CO] =$

[Mn(CO)₃Cp], [Fe(CO)₅], [W(CO)₆] or [Re₂(CO)₁₀] and subsequent alkylation of the resulting metallates with [Me₃O]BF₄. Binuclear complexes with a conjugated C_3R_2 -bridging ligand (types **F**-**H**) are as yet unknown.

There are two straightforward approaches for the synthesis of binuclear complexes with a C₃-bridge, starting from smaller units: (a) coupling of an $(L')_mM'C_2$ fragment with a CML_n fragment, or (b) coupling of an $(L')_mM'C_3$ fragment with an ML_n fragment. All previously prepared binuclear complexes with a C₃- or C₃R-bridge have been

Chem. Ber./Recueil 1997, 130, 479-488 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1997 0009-2940/97/0404-0479 \$ 17.50+.50/0 479

synthesized via route (a). We now report on new routes to heterobinuclear C_3R -bridged complexes. These syntheses follow route (b) by using alkynylcarbene complexes and organometallic halides as the starting compounds and offer a fairly general access to propynylidene complexes, which might serve as precursors for binuclear complexes with a "naked" C_3 -linkage.

Results and Discussion

Alkoxy(ethynyl)carbene complexes, $[(CO)_5M'=C(OR)_5M'=$ $C \equiv CH$] (M' = Cr, W), seemed to be the starting materials of choice for the synthesis of C₃R-bridged binuclear complexes. However, these alkoxy-substituted carbene complexes proved to be too unstable and readily decomposed in solution even at low temperatures. The decomposition was faster than the envisaged coupling reaction with metal halides. In contrast, amino(ethynyl)carbene complexes are more stable due to the stabilizing effect of the amino substituent at the carbon carbon atom, and can be isolated^[5]. The acetylenic proton in the pentacarbonyl[dimethylamino-(ethynyl)carbenelmetal complexes 2a, b was shown to be acidic^[5], similar to that in terminal organic alkynes. Complexes 2a, b^[5] were obtained by desilylation of $[(CO)_5M'=C(NMe_2)C\equiv CSiMe_3]$ (1a, b) with KF/THF/ MeOH. Deprotonation of 2a, b with *n*BuLi at -80 °C in THF or Et₂O gave the lithiated complexes **3a**, **b**. These were treated in situ with the corresponding transition metal halide (Scheme 2).

Scheme 2

Nucleophilic substitution of the halide in $[XML_n]$ by the anion in **3a**, **b** afforded the neutral heterobinuclear complexes 4-7 in 78-85% yield after chromatography. Metal halides of group 10 {[ClNi(PPh₃)Cp] and [BrNi(P-

Me₂Ph)₂(Mes)] (Mes = 2,4,6-C₆H₂Me₃)}, of group 9 {[ClRh(CO)(PPh₃)₂]}, and of group 8 {[IFe(CO)₂Cp]} were successfully used. However, only decomposition of **3a**, **b** was observed when [ClRu(CO)₂Cp], [ClRu(PPh₃)₂Cp], [BrMn(CO)₅] or [BrRe(CO)₅] were employed as substrates. Obviously, decomposition of **3a**, **b** was faster than substitution of (CO)₅M'=C(NMe₂)C=C for the halide in [XML_a].

An attempt to shortcut the sequence $1a \rightarrow 2a \rightarrow 3a \rightarrow$ 7a through direct lithiation of 1a led to an unexpected result. When 1a was treated with MeLi · LiBr and then with [IFe(CO)₂Cp] instead of 7a, the N-[dicarbonyl(cyclopentadienyl)iron]-substituted complex 8a was obtained in 24% yield (Scheme 3). The structure of 8a was unambiguously established by (a) the appearance of two singlets for the X-Me groups at $\delta = 0.33$ (X = Si) and 3.70 (X = N) with a relative intensity of 3:1 in the ¹H-NMR spectrum, and (b) the ¹³C resonances of the alkynyl fragment at $\delta = 114.99$ (C=CSi) and 125.92 (=CSi) [for comparison: δ (C=CX) = 106.06 (1a, X = Si)^[5] and 127.79 (7a, X = Fe); $\delta = CX$ 134.16 (1a, X = Si)^[5] and 148.77 (7a, X = Fe)]. Complex 8a is presumably formed by MeLi-induced abstraction of "Me⁺" from the NMe₂ group in **1a** followed by replacement of the iodide ligand in [IFc(CO)₂Cp] by the resulting anion. Binuclear complexes with a = C(R)O - group linkingthe metal centers (oxycarbenemetal complexes) have been known for a long time^[6,7]; N-transition-metal-substituted aminocarbene complexes [=C(R)-N(R)- as the bridging ligand] are new.

Scheme 3

The problems encountered in the reactions of **3a**, **b** with halides of manganese, rhenium and ruthenium (Scheme 2) could be circumvented by using the [(tributylstannyl)ethynyl]carbene complexes **9a**, **b**. Reaction of **3a**, **b** with Bu₃SnCl gave **9a**, **b** in 79% (**9a**) and 81% yield (**9b**), respectively, as isolable oils which were stable at room temperature under nitrogen. Coupling of **9a**, **b** with metal halides [XML_n] using Stille conditions (0.1 equiv. of [Cl₂Pd(MeCN)₂] as the catalyst)^[8] afforded, within one to three days at room temperature, the complexes **7a**, **b**, **10a**, **b** and **11a-13a** in good to moderate yields (Scheme 4).

The Fe(CO)₂Cp-substituted complexes 7a, b were prepared by both methods. The direct route (Scheme 2) gave slightly higher yields than the route via 9a, b (Scheme 4). When the iron in the metal halide was replaced by its higher homologue ruthenium, the yields dropped. When both CO ligands in [ClRu(CO)₂Cp] were replaced by PPh₃ ligands, three days instead of one were required for completion of the reaction with 9a. Complex 11a was isolated in 22%

FULL PAPER

yield. The expected bis(phosphane)-substituted complex $[(CO)_5W=C(NMe_2)C\equiv CRu(PPh_3)_2Cp]$ was not detected. Clearly, coupling of **9a** with $[ClRu(PPh_3)_2Cp]$ had proceeded with concomitant substitution of one of the two coordinated PPh_3 ligands by CO, either in the metal halide or in the possibly generated $[(CO)_5W=C(NMe_2)C\equiv CRu(PPh_3)_2Cp]$. Carbon monoxide was most likely derived from decomposition of **9a** due to the long reaction time. The loss of a bulky PPh_3 ligand from $[Cp(PPh_3)_2RuX]$ complexes is well-established^[9]. A phosphane/CO exchange was also observed in the reaction of $[Cp(PPh_3)_2RuCl]$ with $[Fe_2(CO)_9]$ at room temperature^[10].

In contrast to 3a, b, complex 9a also reacted with $[BrMn(CO)_5]$ and $[BrRe(CO)_5]$ to form the corresponding binuclear compounds 12a and 13a, albeit in modest to rather low yields.

Binuclear monoaminopropynylidene complexes were prepared by following the route summarized in Scheme 5. The starting complexes 14a, b were obtained by aminolysis of $[(CO)_5M' = C(OMe)C \equiv CSiMe_3]$ with H₂NMe. Desilylation of 14a, b with KF/THF/MeOH afforded the aminocarbene complexes 15a, b. It was not possible to selectively deprotonate the alkynyl group of 15a, b. When *n*BuLi was added to solutions of 15a, b, predominantly decomposition of the complexes was observed. However, on treatment of 15a, b with Bu₃SnNEt₂ the new [(tributylstannyl)ethynyl]carbene complexes 16a, b were formed as yellow oils (Scheme 5). In the reaction of 15a, b with Bu₃SnNEt₂, HNEt₂ was liberated. The yield of 16a, b was low [21% (16a), 14% (16b)] since Michael addition of $HNEt_2$ to the C=C bond could not completely be avoided. Michael addition of amines to the C=C bond has also been observed with other alkynylcarbene complexes^[5,11]. Transmetallation of 16a, b with [IFe(CO)₂Cp], again using Stille conditions, finally led to the complexes 17a, b in 81% and 68% yield, respectively (Scheme 5). For 14a, b-17a, b, the anti isomer [anti arrangement of (CO)₅M' and Me with respect to the C(carbene)-N bond] was found to be the exclusive product, as indicated by NMR spectroscopy (for the structural assignment of *syn* and *anti* isomers of $[(CO)_5M = C(NHMe)C \equiv CPh]$ complexes (M = Cr, W) by NMR spectroscopy see ref.^[11b]).

All new complexes 4-17 were characterized by spectroscopic means and by elemental analyses. At room temperature, compound 5a decomposes in solution within several hours, although it is stable in the solid state. All other complexes were found to be stable at room temperature, both in solution and in the solid state. The positions of the v(CO)absorptions of the pentacarbonyl metal moiety in 4-7. 10-13 and 17 are only marginally influenced by variation of the ML_n fragment. However, due to the strong π -basic properties of the transition metal ligand fragment, the A¹ (trans) and the E absorptions are at significantly smaller wavenumbers than those of the trimethylsilyl-, tributylstannyl- and unsubstituted ethynylcarbene complexes. With increasing back-bonding capacity of the ML_n substituent, the v(C=C) absorption shifts towards smaller wavenumbers. The considerable drop of the v(C=C) band of the binuclear complexes when compared to the corresponding phenylethynyl complexes $[Ph-C=C-ML_n]$ $[ML_n =$ Ni(PPh₃)Cp^[12], Ni(PMe₂Ph)₂(Mes)^[13], Rh(CO)(PPh₃)₂^[14], Fe(CO)₂Cp^[15], $Ru(CO)(PPh_3)Cp^{[16]}$, $Mn(CO)_{5}^{[17]}$ $\operatorname{Re}(\operatorname{CO}_{5}^{[17]})$ or to $[\operatorname{MeOOC-C}=\operatorname{C-Fe}(\operatorname{CO}_{2}\operatorname{Cp}]^{[18]}$ suggests that the $(CO)_5M'=C(NMe_2)$ fragment acts as a strong acceptor.

The resonance of the carbon earbon atom in the ¹³C-NMR spectra of the binuclear complexes is at rather high field (in the region $\delta = 243-253$ for M' = Cr and $\delta =$ 221-232 for M' = W), but compares well with that usually observed for aminocarbone complexes. As expected from the trends in the IR spectroscopic data, substitution of a transition metal ligand fragment for H, SiMe₃ or SnBu₃ causes an upfield shift of the C_{Carbene} resonance. A positive correlation between the resonance of the carbone carbon

FULL PAPER

^[a] Selected bond lengths [Å] and angles [°]: W(1)-C(6) 2.266(5), C(6)-N(1) 1.298(6), C(6)-C(7) 1.424(8), C(7)-C(8) 1.203(8), W(1)-C(5) 2.001(6), W(1)-C(6)-C(7) 114.3(3), W(1)-C(6)-N(1) 130.1(4), C(6)-C(7)-C(8) 173.8(6).

^[a] Selected bond lengths [Å] and angles [°]: W(1)-C(6) 2.255(4), C(6)-N(1) 1.312(6), C(6)-C(7) 1.414(5), C(7)-C(8) 1.217(5), W(1)-C(5) 1.975(5), W(1)-C(6)-C(7) 115.3(3), W(1)-C(6)-N(1) 129.3(2), C(6)-C(7)-C(8) 173.4(4).

atom and the v(C=C) absorption in $(CO)_5W=C(NMe_2)C_{\beta}=C_{\alpha}ML_n$ is observed, while an inverse correlation exists between the $C_{Carbene}$ resonance and the resonances of C_{α} and C_{β} . In the series **5a**, **6a**, **11a**, **7a**, **12a** and **13a** the resonances of the atoms C_{α} and C_{β} shift towards *lower* field and the $C_{Carbene}$ signal shifts towards *higher* field. This indicates increasing importance of the metallacumulene resonance from **K** (Scheme 6).

Scheme 6

XR = NMe₂, OMe

Figure 3. ORTEP plot of complex 7a (ellipsoids drawn at 50% level, hydrogen atoms omitted)^[a]

^[a] Selected bond lengths [Å] and angles [°]: W(1)-C(6) 2.251(6), C(6)-N(1) 1.321(8), C(6)-C(7) 1.414(7), C(7)-C(8) 1.212(7), W(1)-C(5) 1.975(7), W(1)-C(6)-C(7) 113.9(4), W(1)-C(6)-N(1) 130.5(4), C(6)-C(7)-C(8) 171.8(6).

Figure 4. ORTEP plot of complex 10a (ellipsoids drawn at 50% level, hydrogen atoms omitted)^[a]

^[a] Selected bond lengths [Å] and angles [°]: W(1)-C(6) 2.249(6), C(6)-N(1) 1.323(8), C(6)-C(7) 1.424(8), C(7)-C(8) 1.204(8), W(1)-C(5) 1.981(7), W(1)-C(6)-C(7) 113.6(4), W(1)-C(6)-N(1) 131.1(4), C(6)-C(7)-C(8) 170.5(6).

Structures of 4a, 5a, 7a and 10a

The structures of the complexes 4a, 5a, 7a and 10a were additionally established by X-ray structural analyses (Figures 1-4). Within error limits, the central $W=C(NMe_2)C\equiv C-$ unit is identical in all the binuclear complexes. The C(6)-C(7)-C(8)-M fragment is almost linear, the C(6)-C(7)-C(8)-M fragment is almost linear, the C(6)-C(7)-C(8) angle varies between 170.5(6) (10a) and 173.8(6)° (4a), and the C(7)-C(8)-M angle varies between 175.0(5) (4a) and 179.4(5)° (7a). The *W*-bonded carbon atom C(6) and the nitrogen atom N(1) are planar coordinated [sum of angles: $359.9-360.0^{\circ}$ at C(6), 360.0° at N(1)]. The W(1)-C(6) distance, which is in the range of 2.249(6) (10a) to 2.266(5) Å (4a), is longer than that in the aminocarbene complex [($CO)_5W=C(NHMe)Ph$] [2.186(22) Å]^[19] or in 1a (2.224 Å)^[5]. The C(6)-N(1) bond is rather short [1.298(6) (4a) to 1.323(8) Å (10a)] as compared to a

 $C(sp^2)-N(sp^2)$ single bond length (1.416 Å)^[20] but is similar to that in [(CO)₅W=C(NHMe)Ph] (1.299(26) Å)^[19]. This indicates considerable double bond character of the C(6)-N(1) bond, which is consistent with the observation of two distinct NMe resonances in the ¹H- and ¹³C-NMR spectra and emphasizes the importance of resonance form J (Scheme 6) for the description of the overall bonding situation in the binuclear complexes. The C(6)-C(7) distance is only slightly shorter than that of a $C(sp^2)-C(sp)$ bond $(1.431 \text{ Å})^{[20]}$ and that in 1a $(1.434 \text{ Å})^{[5]}$ which indicates that the importance of the resonance structure K increases only slightly when SiMe₃ is replaced by a transition metal ligand fragment. The same conclusion can be drawn from the similarity of the C=C distance in the binuclear complexes with that in other ethynylcarbene complexes such as 1a (1.196 \mathring{A})^[5], [(CO)₅Cr=C[N(Me)C₆H₁₁]C=CH] [1.181(5) \mathring{A}]^[21], $[(CO)_5Cr = C(OEt)C \equiv CPh] [1.19(3) Å]^{[22]}, [(CO)_5W = C(O-C)^{-1}] = C(O-C)^{-1} = C(O-C)^{-1}$ $MeC = C - Re(NO)(PPh_3)Cp^* [1.23(1) Å]^{[2]}$ or in the alkynyl complexes $[Cp(CO)_2FeC \equiv CPh]$ [1.201(9) Å]^[23] and $[Cp(PPh_3)_2RuC = CPh]$ [1.215(4) Å]^[24]. These structural features, i.e. a short C(7)-C(8) bond, a rather long C(6)-C(7)bond and the strong mesomeric interaction between the amino nitrogen and the C(6) atom imply that a strong mesomeric interaction between the two metal centers in these binuclear complexes is absent.

The various binuclear complexes principally differ in the orientation of the ML_n fragment with respect to the $(CO)_5W=C(NMe_2)C=C$ unit. In 4a, the carbene plane [formed by the atoms C(6), N(1) and C(7)] and the "Ni" plane C(8), Ni(1), P(1) are skewed (angle between these planes: 119.3°). In 5a, the Ni atom is nearly planar coordinated [Ni(1) and the Ni-bound atoms deviate only slightly from the mean plane through the NiC₂P₂ fragment [Ni(1): 0.00 Å, P(1) and P(2): -0.12 Å, C(8): +0.12 Å, C(31): +0.11 Å)]. The NiC₂P₂ plane and the carbene plane are almost orthogonal (angle between the planes: 93.2°). In contrast, in 7a and in 10a, the carbene plane and the mirror plane of the Cp(CO)₂M fragment almost coincide [angle between these planes: 12.5° (M = Fe) and 14.6° (M = Ru); NMe₂ an Cp "*cis*"].

Conclusion

Our results demonstrate the feasibility of the concept coupling an $(L')_m M'C_3$ and an ML_n fragment for the synthesis of heterobimetallic complexes with a π -conjugated C_3 propynylidene chain. A wide range of bimetallic complexes are accessible, either by nucleophilic substitution of the halide X in $[XML_n]$ by lithiated ethynylcarbene complexes, or by Pd-catalyzed coupling of stannylated ethynylcarbene complexes with $[XML_n]$. The two approaches are complementary; those complexes which cannot be prepared by the substitution route (Scheme 2) are obtainable by the coupling route (Schemes 4 and 5).

Compared to the coupling of an $(L')_m M'C_2$ unit with a CML_n unit by reaction of a lithiated alkynyl complex with [OC-ML_n], as proposed by Gladysz et al., these routes (Schemes 2, 4 and 5) offer some advantages. They are not restricted to carbonyl-containing transition metal com-

plexes with a strongly electrophilic carbonyl carbon atom. Metal halides without a carbonyl coligand, which are accessible in great variety, as well as carbonyl-containing metal halides can be employed.

The IR and NMR spectra indicate that the mesomeric interaction between the two metal centers is rather small. The ML_n fragment in $[(CO)_5M'=C(NR_2)C=CML_n]$ acts as a weak π -donor. The mesomeric interaction increases with increasing π -donor properties of the ML_n fragment. However, the enhancement is rather small, presumably due to the influence of the strong π -donor substituent NRMe at the carbene carbon atom, and does not significantly alter the various distances in the M=C-C=C fragment.

Support of this work by the *Fonds der Chemischen Industrie* is gratefully acknowledged. We thank *B. Weibert* for collecting the data sets for the X-ray structural analyses.

Experimental Section

All operations were performed under argon by using standard Schlenk techniques. Solvents were dried by refluxing over CaH₂ (CH₂Cl₂) or sodium/benzophenone ketyl (pentane, Et₂O, THF) and were freshly distilled prior to use. The yields refer to analytically pure substances and were not optimized. Silica gel used for column chromatography (J. T. Baker, silica gel for flash chromatography) was argon-saturated. The complexes 1a, b^[5], [ClNi-(PPh₃)Cp]^[25], [BrNi(PMe₂Ph)₂(Mes)]^[26], [IFe(CO)₂Cp]^[27], [ClRu-(CO)₂Cp]^[28], [ClRu(PPh₃)₂Cp]^[29], [BrMn(CO)₅]^[27], [BrRe(CO)₅]^[27] and [Cl₂Pd(MeCN)₂]^[30] as well as Bu₃SnNEt₂^[31] were prepared according to literature procedures. For the synthesis of 2a, b by desilylation of 1a, b KF/THF/MeOH was used instead of Bu₄NF/ $H_2O^{[5]}$. HC=CSiMe₃ was obtained from Acros, [ClRh(CO)(PPh₃)₂] and Bu₃SnCl were purchased from Aldrich. NMR: Bruker AC 250, Bruker WM 250 and Jeol JNX 400; chemical shifts are reported relative to internal TMS (¹H and ¹³C) or external H₃PO₄ (³¹P). Unless mentioned otherwise, NMR spectra were recorded in CDCl₃ at room temperature. - IR: Biorad FTS 60. - MS: Finnigan MAT 312. - Elemental analyses: Heraeus CHN-O-RAPID.

Pentacarbonyl {3-[$(\eta^5$ -cyclopentadienyl)(triphenylphosphane)nickelio]-1-dimethylaminopropynylidene}tungsten (4a) and -chromium (4b): 5.00 mmol of nBuLi (3.13 ml of a 1.6 M solution in hexane) was added at -80 °C to a solution of 5.00 mmol of 2a (2.03 g) or 2b (1.37 g) in 30 ml of THF. The yellow solution was stirred for 30 min at -80 °C. Then, 5.00 mmol (2.11 g) of [CINi(PPh₃)Cp] was added and the mixture was stirred for 30 min at room temp. The color of the solution changed to dark-green. The solvent was removed in vacuo. The dark-green residue was dissolved in 10 ml of Et₂O and chromatographed at -40 °C on silica gel with pentane/Et₂O [3:2 (4a), 2:1 (4b)]. The green band containing 4a or 4b was eluted. Evaporation of the solvent in vacuo afforded complexes 4a, b as green solids. Recrystallization from 25 ml of Et₂O/pentane [5:2 (4a), 4:1 (4b)] gave 4a, b as green crystals.

4a: Yield: 3.16 g (80%, based on **2a**), m.p. 148 °C (dec.). – IR (Et₂O): v(CO) = 2060 cm⁻¹ w, 1965 w, 1922 s, 1903 m; v(C=C) = 2039 cm⁻¹ w. – ¹H NMR: δ = 2.34 (s, 3H, CH₃), 3.35 (s, 3H, CH₃), 5.27 (s, 5H, C₅H₅), 7.35–7.44 (m, 9H, C₆H₅), 7.62–7.70 (m, 6H, C₆H₅). – ¹³C NMR: δ = 43.16, 50.36 (CH₃), 93.14 (C₅H₅), 128.34 [J(PC) = 10.5 Hz], 133.96 [J(PC) = 11.0 Hz] (*o*,*m*-C), 130.45 (*p*-C), 131.00 [³J(PC) = 4.2 Hz, C_β], 133.26 [¹J(PC) n. f., *i*-C], 146.31 [²J(PC) = 45.1 Hz, C_α], 199.68 [¹J(WC) = 127.9 Hz, *cis*-CO], 205.04 (*trans*-CO), 226.06 (W=C). – ³¹P NMR: δ = 44.05. – MS (FAB, NBOH); *m/z* (%): 789 (30) [M⁺ (¹⁸⁴W, ⁵⁸Ni)], 761 (28), 733 (52), 705 (100), 677 (53), 649 (49) $[M^+ - n CO, n = 1-5]$, 385 (88) $[Ni(C_5H_5)PPh_3^+]$. - $C_{33}H_{26}NNiO_5PW$ (790.1): calcd. C 50.17, H 3.32, N 1.77; found C 50.00, H 3.29, N 1.78.

4b: Yield: 2.63 g (80%, based on **2b**), m.p. 138 °C (dec.). – IR (Et₂O): v(CO) = 2052 cm⁻¹ w, 1968 w, 1925 s, 1905 m; v(C=C) = 2036 cm⁻¹ w. – ¹H NMR: $\delta = 2.37$ (s, 3H, CH₃), 3.41 (s, 3H, CH₃), 5.27 (s, 5H, C₅H₅), 7.33–7.46 (m, 9H, C₆H₅), 7.61–7.70 (m, 6H, C₆H₅). – ¹³C NMR: $\delta = 44.67$, 48.10 (CH₃), 93.13 (C₅H₅), 128.30 [*J*(PC) = 10.8 Hz], 133.93 [*J*(PC) = 11.2 Hz] (*o*,*m*-C), 129.53 [³*J*(PC) = 3.2 Hz, C_β], 130.44 (*p*-C), 133.21 [¹*J*(PC) n. f., *i*-C], 148.44 [²*J*(PC) = 46.3 Hz, C_α], 218.40 (*cis*-CO), 224.69 (*trans*-CO), 243.72 (Cr=C). – ³¹P NMR: $\delta = 43.91$. – C₃₃H₂₆CrNNiO₅P (658.2): calcd. C 60.22, H 3.98, N 2.13; found C 60.12, H 4.03, N 2.23.

Pentacarbonyl {3-[trans-mesitylbis(dimethylphenylphosphane)nickelio [-1-dimethylaminopropynylidene] tungsten (5a): 3.00 mmol of *n*BuLi (1.88 ml of a 1.6 M solution in hexane) was added to a solution of 3.00 mmol (1.22 g) of 2a in 20 ml of Et₂O at -80 °C. On stirring for 30 min at -80 °C, the yellow solution turned cloudy. Then, 3.00 mmol (1.48 g) of [BrNi(PMe₂Ph)₂(Mes)] and 10 ml of THF were added and the dark-yellow solution was stirred for 30 min at room temp. The solvent was removed in vacuo, the brownyellow residue was dissolved in 6 ml of CH₂Cl₂ and chromatographed at -40°C on silica gel. With pentane/CH₂Cl₂ (3:1) the yellow band containing 5a was eluted. Evaporation of the solvent in vacuo and recrystallization from 25 ml of pentane/CH₂Cl₂ (1:4) afforded 5a as yellow crystals. Yield: 2.16 g (84%, based on 2a), m.p. 107 °C (dec.). – IR (Et₂O): $v(CO) = 2058 \text{ cm}^{-1} \text{ w}$, 1965 w, 1921 s, 1903 sh; $v(C=C) = 2007 \text{ cm}^{-1} \text{ w.} - {}^{1}\text{H} \text{ NMR} (CD_2Cl_2)$ -40 °C): $\delta = 1.21$ [t, ²J(PH) = 3.7 Hz, 12 H, PCH₃], 2.10 (s, 3 H, p-CH₃), 2.17 (s, 6H, o-CH₃), 3.05 [s, 3H, N(CH₃)], 3.49 [s, 3H, N(CH₃)], 6.47 (s, 2H, m-H), 7.31-7.38 (m, 6H, PC₆H₅), 7.63-7.71 (m, 4H, PC₆H₅). - ¹³C NMR (CDCl₃, -40 °C): $\delta = 14.41$ $[^{1}J(PC) = 15.8 \text{ Hz}, PCH_{3}], 20.66 (p-CH_{3}), 25.16 (o-CH_{3}), 43.59,$ 50.66 (NCH₃), 125.76, 127.74, 129.22, 131.17 [J(PC) = 4.5 Hz](o,m,p-C of C₆H₅, m-C of Mes), 130.45, 131.52 (o,p-C of Mes), 136.13 [J(PC) = 20.9 Hz], 142.09, 155.75 [J(PC) = 30.6 Hz] (*i*-C of Mes, *i*-C of C₆H₅, C₆), 179.33 [²J(PC) = 31.8 Hz, C_{α}], 199.31 $[{}^{1}J(WC) = 127.7 \text{ Hz}, \text{ cis-CO}], 204.90 [{}^{1}J(WC) = 132.6 \text{ Hz}, \text{ trans-}$ CO], 221.23 [${}^{1}J(WC) = 85.1 \text{ Hz}, W=C$]. - ${}^{31}P \text{ NMR} (CD_{2}Cl_{2}, CD_{2})$ room temp.): $\delta = 1.04$. – MS (70 eV); m/z (%): 857 (0.5) [M⁺ $(^{184}W, ^{58}Ni)$], 801 (0.7) [M⁺ - 2 CO], 745 (0.6) [M⁺ - 4 CO], 717 (0.7) [M⁺ - 5 CO], 579 (4) [M⁺ - 5 CO - PMe₂Ph], 523 (4) [M⁺ - Ni(PMe₂Ph)₂], 334 (100) [Ni(PMe₂Ph)₂⁺], 196 (51) [Ni(P- Me_2Ph)⁺]. - $C_{35}H_{39}NNiO_5P_2W$ (858.2): calcd. C 48.99, H 4.58, N 1.63; found C 48.84, H 4.54, N 1.85.

Pentacarbonyl {3-[trans-carbonylbis(triphenylphosphane)rhodio]-1-dimethylaminopropynylidene } tungsten (6a): 1.00 mmol of nBuLi (0.63 ml of a 1.6 M solution in hexanc) was added to a solution of 1.00 mmol (0.41 g) of 2a in 10 ml of Et_2O at -80 °C. On stirring the yellow solution for 30 min at -80 °C, formation of a white precipitate was observed. Then, 1.00 mmol (0.69 g) of [ClRh(CO)(PPh₃)₂] and 5 ml of THF were added and the mixture was stirred for 30 min at room temp. The solvent was removed in vacuo. The residue was dissolved in 3 ml of CH₂Cl₂ and chromatographed at -40°C with pentane/CH₂Cl₂ (3:2) on silica gel. A yellow band was eluted, evaporation of the solvent from which afforded complex 6a as a yellow powder. Yield: 0.88 g (83%, based on 2a), m.p. 146 °C (dec.). – IR (Et₂O): $v(CO) = 2059 \text{ cm}^{-1} \text{ w}$, 1969 w, 1926 s, 1914 s, 1902 sh; $v(C=C) = 1987 \text{ cm}^{-1} \text{ m}. - {}^{1}\text{H}$ NMR: $\delta = 2.29$ (s, 3H, CH₃), 3.22 (s, 3H, CH₃), 7.31-7.42 (m, 18 H, C₆H₅), 7.67–7.75 (m, 12 H, C₆H₅). – ¹³C NMR: δ = 43.37, $50.52 (CH_3), 128.03 [J(PC) n. f.], 134.61 [J(PC) = 6.0 Hz] (m.o-C),$

129.97 (*p*-C), 131.37 (C₆), 134.18 [¹J(PC) = 22.7 Hz, *i*-C], 175.27 [¹J(RhC) = 42.3 Hz, ²J(PC) = 21.6 Hz, C_α], 193.85 (RhCO), 199.30 [¹J(WC) = 128.4 Hz, *cis*-WCO], 204.59 (*trans*-WCO), 222.33 [¹J(WC) = 86.7 Hz, W=C]. $-^{31}$ P NMR: $\delta = 33.45$ [¹J(RhP) = 135.1 Hz]. - MS (FAB, NBOH); *m*/z (%): 1059 (8) [M⁺ (¹⁸⁴W, ¹⁰³Rh)], 1003 (7) [M⁺ - 2 CO], 947 (10) [M⁺ - 4 CO], 891 (38) [M⁺ - 6 CO], 655 (41) [Rh(CO)(PPh₃)₂⁺], 627 (85) [Rh(PPh₃)₂⁺]. - C₄₇H₃₆NO₆P₂RhW (1059.5): calcd. C 53.28, H 3.42, N 1.32; found C 53.23, H 3.52, N 1.50.

Pentacarbonyl $\{3-[dicarbonyl(\eta^5-cyclopentadienyl)]$ ferrio J-I-dimethylaminopropynylidene $\}$ tungsten (**7a**) and -chromium (**7b**)

(A) Synthesis by Nucleophile Substitution: 8.00 mmol of nBuLi (5.00 ml of a 1.6 M solution in hexane) was added to a solution of 8.00 mmol of **2a** (3.24 g) or **2b** (2.19 g) in 30 ml of Et₂O. On stirring the yellow solution for 30 min at -80 °C, a white precipitate was formed. Then, 8.00 mmol (2.43 g) of [IFe(CO)₂Cp] and 20 ml of THF were added and the mixture was stirred for 30 min at room temp. After removal of the solvent in vacuo, the dark residue was dissolved in 16 ml of Et₂O and chromatographed at -40 °C on silica gel. With pentane/Et₂O [3:2 (**7a**), 4:3 (**7b**)] the yellow band containing **7a** or **7b** was cluted. Removal of the solvent in vacuo and recrystallization from 45 ml of Et₂O/pentane [4:1 (**7a**), 5:2 (**7b**)] gave yellow crystals.

(B) Synthesis by Coupling Reaction: A solution of 5.00 mmol of **9a** (3.47 g) or **9b** (2.81 g), 5.00 mmol (1.52 g) of [IFe(CO)₂Cp] and 0.5 mmol (0.13 g) of [Cl₂Pd(MeCN)₂] in 20 ml of toluene was stirred for 2 d at room temp. The color of the solution changed from yellow to dark-brown. After evaporation of the solvent in vacuo, the dark residue was dissolved in 10 ml of Et₂O and chromatographed with pentane/Et₂O [3:2 (7a), 4:3 (7b)] at -40° C on silica gel. First, a narrow yellow band containing **9a** or **9b**, and then an intensely yellow band containing **7a** or **7b** was eluted. Evaporation of the solvent in vacuo gave yellow solids.

7a: Yield: Route (A): 3.95 g (85%, based on **2a**); route (B): 2.41 g (83%, based on **9a**), m.p. 114°C (dec.). – IR (Et₂O): v(CO) = 2065 cm⁻¹ br. w, 2034 m, 2003 m, 1967 w, 1923 s, 1907 sh; v(C=C) = 2067 cm⁻¹ w. – ¹H NMR: δ = 3.51 (s, 3H, CH₃), 3.66 (s, 3H, CH₃), 5.12 (s, 5H, C₅H₅). – ¹³C NMR: δ = 44.26, 50.65 (CH₃), 85.54 (C₅H₅), 127.79 (C_β), 148.77 (C_α), 199.58 [¹J(WC) = 128.3 Hz, *cis*-WCO], 204.92 [¹J(WC) = 131.7 Hz, *trans*-WCO], 211.15 (FeCO), 227.59 [¹J(WC) = 86.7 Hz, W=C]. – MS (FAB, NBOH); *mlz* (%): 581 (62) [M⁺ (¹⁸⁴W, ⁵⁶Fe)], 553 (48), 525 (41), 497 (100), 469 (41), 441 (21), 413 (27), 385 (20) [M⁺ – *n* CO, *n* = 1–7]. – C₁₇H₁₁FeNO₇W (581.0): calcd. C 35.15, H 1.91, N 2.41; found C 35.04, H 1.95, N 2.49.

7b: Yield: Route (A): 2.80 g (78%, based on **2b**); route (B): 1.59 g (71%, based on **9b**), m.p. 112 °C (dec.). – IR (Et₂O): v(CO) = 2054 cm⁻¹ w, 2032 m, 2002 m, 1969 w, 1926 sw, 1910 sh; v(C=C) = 2066 cm⁻¹ w. – ¹H NMR: $\delta = 3.54$ (s, 3 H, CH₃), 3.74 (s, 3 H, CH₃), 5.13 (s, 5 H, C₅H₅). – ¹³C NMR: $\delta = 45.74$, 48.40 (CH₃), 85.50 (C₅H₅), 126.38 (C_β), 150.93 (C_α), 211.15 (FeCO), 218.37 (*cis*-CrCO), 224.54 (*trans*-CrCO), 245.90 (Cr=C). – MS (70 eV); *m*/*z* (%): 449 (2) [M⁺ (⁵²Cr, ⁵⁶Fe)], 393 (8), 365 (2), 337 (10), 309 (19), 281 (40), 253 (73), [M⁺ – *n* CO, *n* = 2–7]. – C₁₇H₁₁CrFeNO₇ (449.1): calcd. C 45.46, H 2.47, N 3.12; found C 45.54, H 2.48, N 3.27.

Pentacarbonyl {1-N-[dicarbonyl(η^5 -cyclopentadienyl)[ferrio]methylamino-3-trimethylsilylpropynylidene]tungsten (8a): 4.00 mmol of MeLi · LiBr (2.67 ml of a 1.5 M solution in Et₂O) was added at -80 °C to a solution of 4.00 mmol (1.91 g) of 1a in 80 ml of THF and the mixture was stirred at this temperature for 30 min. Then, 4.00 mmol (1.22 g) of [IFe(CO)₂Cp] was added. The brown solution was stirred for 30 min at room temp. and then the solvent was removed in vacuo. The brown residue was dissolved in 8 ml of CH₂Cl₂ and chromatographed with pentane/CH₂Cl₂ (3:2) at -30 °C on silica gel. First, a narrow yellow band containing 1a, and then an intensely yellow band containing 8a was eluted. Removal of the solvent in vacuo afforded 8a as an analytically pure vellow powder. Yield: 0.46 g (24%, based on 1a), m.p. 132 °C (dec.). - IR (Et₂O); v(CO) = 2059 cm⁻¹ w, 2043 m, 1999 m, 1965 w, 1922 s. 1904 m. $- {}^{1}H$ NMR (CD₂Cl₂, room temp.): $\delta = 0.33$ (s, 9H, SiCH₃), 3.70 (s, 3H, NCH₃), 5.10 (s, 5H, C₅H₅). - ¹³C NMR $(CD_2Cl_2, \text{ room temp.}): \delta = -0.52 \text{ (SiCH}_3), 67.28 \text{ (NCH}_3), 87.23$ (C_5H_5) , 114.99 (C_{β}) , 125.92 (C_{α}) , 200.56 $[^{1}J(WC) = 128.3$ Hz, cis-WCO], 205.67 (trans-WCO), 212.03 [Fe(CO)₂], 241.42 (W=C). -MS (70 eV); m/z (%): 639 (3) [M⁺ (¹⁸⁴W, ⁵⁶Fe)], 611 (0.7), 583 (3), 555 (6), 527 (6), 499 (2), 471 (32), 443 (24) $[M^+ - n CO, n =$ 1-7], 121 (100) [Fe(C₅H₅)⁺]. - C₁₉H₁₇FeNO₇SiW (639.1): calcd. C 35.71, H 2.68, N 2.19; found C 35.98, H 2.73, N 2.46.

Pentacarbonyl[(1-dimethylamino-3-tributylstannyl)propynylidene]tungsten (9a) and -chromium (9b): 10.00 mmol of nBuLi (6.25 ml of a 1.6 M solution in hexane) was added at -80 °C to a solution of 10.00 mmol of 2a (4.05 g) or 2b (2.73 g) in 40 ml of Et₂O. On stirring the yellow solution for 30 min at -80 °C, a white solid precipitated. Then, 10.00 mmol (3.26 g) of Bu₃SnCl was added at -80 °C and the mixture was stirred for 45 min at room temp. After evaporation of the solvent in vacuo the residue was dissolved in 40 ml of pentane and chromatographed at -30 °C on silica gel. With pentane/CH₂Cl₂ (5:1) a yellow band containing 9a or 9b was eluted. Removal of the solvent in vacuo afforded complexes 9a, b as analytically pure yellow oils.

9a: Yield: 5.48 g (79%, based on 2a). - IR (pentane): v(CO) = 2063 cm⁻¹ w, 1974 w, 1937 s, 1931 s. - ¹H NMR: $\delta = 0.90$ (t, J =7.2 Hz, 9H, CH₂CH₃), 0.98-1.16 (m, 6H, SnCH₂), 1.23-1.45 (m, 6H, SnCH₂CH₂), 1.50-1.74 (m, 6H, CH₂CH₃), 3.58 (s, 3H, NCH₃), 3.74 (s, 3 H, NCH₃). $-^{13}$ C NMR: $\delta = 11.32 \ {}^{[1]}J({}^{117}$ SnC, 119 SnC) = 379.0 Hz, 362.83 Hz, SnCH₂], 13.52 (CH₂CH₃), 26.92 $[^{2}J(^{117/119}SnC) = 59.5 Hz, SnCH_{2}CH_{2}], 28.86 [^{3}J(^{117/119}SnC) = 24.1$ Hz, CH_2CH_3], 45.82, 51.41 (NCH₃), 112.39 [${}^2J({}^{117/119}SnC) = 40.1$ Hz, C_{β}], 136.07 [¹J(¹¹⁷SnC, ¹¹⁹SnC) = 249.1 Hz, 236.2 Hz, C_{α}], 198.68 $[{}^{1}J(WC) = 127.0 \text{ Hz}, \text{ cis-CO}], 204.33 [{}^{1}J(WC) = 130.0 \text{ Hz},$ *trans*-CO], 230.28 [¹J(WC) = 87.6 Hz, W=C]. - MS (70 eV); m/z(%): 695 (32) $[M^+ ({}^{184}W, {}^{120}Sn)]$, 639 (81) $[M^+ - 2 CO]$, 583 (39) $[M^+ - 4 CO], 555 (41) [M^+ - 5 CO], 469 (17) [M^+ - 4 CO - 2]$ Bu], 441 (100) $[M^+ - 5 CO - 2 Bu]$, 412 (49) $[M^+ - 4 CO - 3]$ Bu], 385 (54) $[M^+ - 5 CO - 2 Bu - C_4 H_8]$. - $C_{22}H_{33}NO_5SnW$ (694.1): calcd. C 38.07, H 4.79, N 2.02; found C 38.12, H 4.76, N 2.00.

9b: Yield: 4.55 g (81%, based on 2b). – IR (pentane): v(CO) = 2056 cm⁻¹ w, 1977 w, 1941 s, 1935 s. – ¹H NMR: δ = 0.83–0.93 (m, 9H, CH₂CH₃), 1.06–1.12 (m, 6H, SnCH₂), 1.30–1.34 (m, 6H, SnCH₂CH₂), 1.35–1.62 (m, 6H, CH₂CH₃), 3.62 (s, 3H, NCH₃), 3.84 (s, 3H, NCH₃). – ¹³C NMR: δ = 11.34 [¹J(¹¹⁷SnC, ¹¹⁹SnC) = 379.05 Hz, 363.03 Hz, SnCH₂], 13.58 (CH₂CH₃), 26.97 [²J-(^{117/119}SnC) = 61.0 Hz, SnCH₂CH₂], 28.91 [³J(^{117/119}SnC) = 23.6 Hz, CH₂CH₃], 47.31, 49.26 (NCH₃), 110.73 [²J(^{117/119}SnC) = 41.6 Hz, C_β], 138.98 (C_α), 217.51 (*cis*-CO), 224.22 (*trans*-CO), 250.60 (Cr=C). – MS (70 eV); *m*/z (%): 563 (1) [M⁺, (⁵Cr, ¹²⁰Sn)], 507 (2), 479 (2), 451 (4), 423 (10) [M⁺ – n CO, n = 2–5)], 309 (13) [M⁺ – 5 CO – 2 Bu], 253 (46) [M⁺ – 5 CO – 2 Bu – C₄H₈], 52 (100) [Cr⁺]. – C₂₂H₃₃CrNO₅Sn (562.2): calcd. C 47.00, H 5.92, N 2.49; found C 46.98, H 5.97, N 2.53.

Pentacarbonyl {3-[dicarbonyl(η^5 -cyclopentadienyl)ruthenio]-1dimethylaminopropynylidene}tungsten (10a) and -chromium (10b): 3.00 mmol of 9a (2.08 g) or 9b (1.69 g), 3.00 mmol (0.77 g) of [ClRu(CO)₂Cp] and 0.30 mmol (0.08 g) of [Cl₂Pd(MeCN)₂] were dissolved in 15 ml of toluene. The solution was stirred for 1 d at room temp. The color changed from yellow to dark-brown. Removal of the solvent in vacuo afforded a dark-brown residue which was dissolved in 6 ml of CH₂Cl₂ and chromatographed at -30 °C on silica gel. With pentane/CH₂Cl₂ [1:1 (10a), 5:4 (10b)] the yellow band containing 10a or 10b was eluted. Evaporation of the solvent in vacuo and recrystallization from 25 ml of pentane/CH₂Cl₂ [1:3 (10a), 1:5 (10b)] gave yellow crystals.

10a: Yield: 1.16 g (62%, based on **9a**), m.p. 132 °C (dec.). – IR (Et₂O): v(CO) = 2077 cm⁻¹ w, 2039 m, 2004 m, 1967 w, 1923 s, 1906 sh; v(C=C) = 2062 cm⁻¹ w. – ¹H NMR: δ = 3.54 (s, 3H, CH₃), 3.66 (s, 3H, CH₃), 5.51 (s, 5H, C₅H₅). – ¹³C NMR: δ = 44.39, 50.67 (CH₃), 88.13 (C₅H₅), 121.67 (C_β), 140.66 (C_α), 195.72 (RuCO), 199.51 [¹J(WC) = 127.0 Hz, *cis*-WCO], 204.92 [¹J(WC) = 131.68 Hz, *trans*-WCO], 228.25 [¹J(WC) = 85.4 Hz, W=C]. – MS (70 eV); *m*/z (%): 627 (19) [M⁺ (¹⁸⁴W, ¹⁰²Ru)], 599 (11), 571 (12), 543 (56), 515 (100), 487 (27), 459 (73), 431 (59) [M⁺ – *n* CO, *n* = 1–7]. – C₁₇H₁₁NO₇RuW (626.2): calcd. C 32.61, H 1.77, N 2.24; found C 32.71, H 1.73, N 2.44.

10b: Yield: 0.88 g (59%, based on **9b**), m.p. 127 °C (dec.). – IR (Et₂O): v(CO) = 2075 cm⁻¹ w, 2037 m, 2003 m, 1970 w, 1926 s, 1910 sh; v(C=C) = 2056 w. – ¹H NMR: δ = 3.58 (s, 3H, CH₃), 3.74 (s, 3H, CH₃), 5.52 (s, 5H, C₅H₅). – ¹³C NMR: δ = 45.90, 48.45 (CH₃), 88.13 (C₅H₅), 120.29 (C₈), 142.91 (C_α), 195.77 (RuCO), 218.32 (*cis*-CrCO), 224.53 (*trans*-CrCO), 246.94 (Cr=C). – MS (70 eV); *m/z* (%): 495 (0.7) [M⁺ (⁵²Cr, ¹⁰²Ru)], 467 (0.3), 439 (3), 411 (0.9), 383 (8), 355 (7), 327 (34), 299 (27) [M⁺ – *n* CO, *n* = 1–7], 52 (100) [Cr⁺]. – C₁₇H₁₁CrNO₇Ru (494.3): calcd. C 41.30, H 2.24, N 2.83; found C 41.18, H 2.42, N 3.09.

Pentacarbonyl {3-[carbonyl(n⁵-cyclopentadienyl)(triphenylphosphane)ruthenio]-1-dimethylaminopropynylidene}tungsten (11a): A solution of 3.00 mmol (2.08 g) of 9a, 3.00 mmol (2.18 g) of [ClRu(PPh₃)₂Cp] and 0.30 mmol (0.08 g) of [Cl₂Pd(MeCN)₂] in 15 ml of toluenc was stirred for 3 d at room temp. The color changed from yellow to dark-brown. The solvent was removed in vacuo, the dark-brown residue was dissolved in 6 ml of CH₂Cl₂ and chromatographed with pentane/CH₂Cl₂ (3:2) at -30 °C on silica gel. A yellow band contained 11a. Yield: 0.57 g (22%, based on 9a), m.p. $158 \,^{\circ}\text{C}$ (dec.). – IR (Et₂O): v(CO) = 2060 cm⁻¹ w, 1978 sh, 1963 m, 1919 s, 1902 sh; v(C=C) = 2035 cm⁻¹ m. $- {}^{1}$ H NMR: $\delta = 2.81$ (s, 3H, CH₃), 3.50 (s, 3H, CH₃), 5.09 (s, 5H, C₅H₅), 7.32-7.52 (m, 15H, C₆H₅). - ¹³C NMR: δ = 43.44, 50.57 (CH₃), 87.89 (C₅H₅). 126.24 (C_B), 128.24 [*J*(PC) = 10.9 Hz], 133.47 [*J*(PC) = 11.2 Hz] (m,o-C), 130.26 (p-C), 135.65 $[{}^{1}J(PC) = 49.9$ Hz, *i*-C], 161.64 $[{}^{2}J(PC) = 21.4, C_{\alpha}], 199.98 [{}^{1}J(WC) = 127.2 \text{ Hz}, cis-WCO], 202.96$ $[^{2}J(PC) = 18.6$ Hz, RuCO], 204.94 $[^{1}J(WC) = 131.7$ Hz, trans-WCO], 225.11 [¹J(WC) = 85.1 Hz, W=C]. $-{}^{31}$ P NMR: $\delta = 55.80$. - MS (FAB, NBOH); m/z (%): 861 (9) [M⁺ (¹⁸⁴W, ¹⁰²Ru)], 833 (14), 805 (22), 777 (26), 749 (36), 721 (55), 693 (100) $[M^+ - n CO,$ n = 1-6]. - C₃₄H₂₆NO₆PRuW (860.5): calcd. C 47.46, H 3.05, N 1.63; found C 47.52, H 2.94, N 1.87.

Pentacarbonyl {3-[(pentacarbonyl)manganio]-1-dimethylaminopropynylidene}tungsten (12a) and Pentacarbonyl {3-[(pentacarbonyl)rhenio]-1-dimethylaminopropynylidene}tungsten (13a): A solution of 3.00 mmol (2.08 g) of 9a, 3.00 mmol of BrM(CO)₅ [M = Mn (0.82 g) or Re (1.22 g)] and 0.30 mmol (0.08 g) of [Cl₂Pd(MeCN)₂] in 15 ml of toluene (M = Mn) or in 20 ml of toluene/THF (1:1) (M = Re) was stirred for 1 d at room temp. The solvent was then removed in vacuo, the dark-brown residue was dissolved in 6 ml of CH₂Cl₂ and chromatographed with pentane/ CH₂Cl₂ (4:1) at -40 °C on silica gel. First, a pale-yellow band ([W(CO)₆]) was eluted. A second pale-yellow band afforded, after removal of the solvent in vacuo, complexes 12a and 13a as paleyellow powders.

12a: Yield: 0.63 g (35%, based on **9a**), m.p. 120°C (dec.). – IR (Et₂O): v(CO) = 2138 cm⁻¹ w, 2062 w, 2046 m, 2019 w, 1927 s, 1911 sh; v(C=C) = 2080 cm⁻¹ w. – ¹H NMR: δ = 3.56 (s, 3H, CH₃), 3.70 (s, 3 H, CH₃). – ¹³C NMR: δ = 44.85, 51.00 (CH₃), 125.04 (C_β), 144.15 (C_a), 199.22 [¹J(WC) = 128.4 Hz, *cis*-WCO], 204.66 [*trans*-WCO], 205.68 [*cis*-MnCO], 207.63 [*trans*-MnCO], 229.33 [¹J(WC) = 86.7 Hz, W=C]. – MS (70 eV); *m*/z (%): 599 (18) [M⁺ (¹⁸⁴W, ⁵⁵Mn], 571 (8), 543 (11), 515 (7), 487 (3), 459 (17), 431 (38), 403 (100), 375 (29), 347 (25), 319 (18) [M⁺ – *n* CO, *n* = 1–10]. – C₁₅H₆MnNO₁₀W (599.0): calcd. C 30.08, H 1.01, N 2.34; found C 30.06, H 1.08, N 2.31.

13a: Yield: 0.20 g (9%, based on **9a**), m.p. 131 °C (dec.). – IR (Et₂O): v(CO) = 2151 cm⁻¹ w, 2062 w, 2041 m, 2004 w, 1926 s, 1909 sh; v(C=C) = 2082 cm⁻¹ w. – ¹H NMR: δ = 3.54 (s, 3H, CH₃), 3.67 (s, 3H, CH₃). – ¹³C NMR: δ = 44.95, 50.91 (CH₃), 120.27 (C_β), 132.63 (C_α), 177.71 [*cis*-ReCO], 180.56 [*trans*-ReCO], 199.32 [¹J(WC) = 128.1 Hz, *cis*-WCO], 204.75 [¹J(WC) = 131.6 Hz, *trans*-WCO], 230.28 [¹J(WC) = 86.4 Hz, W=C]. – MS (70 eV); *mlz* (%): 731 (27) [M⁺ (¹⁸⁴W, ¹⁸⁷Re)], 703 (15), 675 (17), 647 (60), 619 (100), 591 (81), 563 (64), 535 (49), 507 (50), 479 (37), 451 (26) [M⁺ – *n* CO, *n* = 1–10], 407 (25) [M⁺ – W(CO)₅]. – C₁₅H₆NO₁₀-ReW (730.3): A correct elemental analysis of **11a** could not be obtained.

Pentacarbonyl[(1-methylamino-3-trimethylsilyl)propynylidene]tungsten (14a) and -chromium (14b): 28.3 mmol of nBuLi (17.7 ml of a 1.6 M solution in hexane) was added at -80°C to a solution of 28.3 mmol (2.78 g) of HC=CSiMe₃ in 160 ml of Et₂O. After stirring the mixture for 30 min at 0°C, 28.3 mmol of [W(CO)₆] (9.96 g) or $[Cr(CO)_6]$ (6.23 g) and 20 ml of THF were added. The solid [M(CO)₆] slowly dissolved within 1 h at room temp., and the color of the solution changed from light-yellow to dark-red. The red solution was cooled to 0°C and 42.5 mmol (6.97 g) of F_3CSO_3Me was added dropwise. The reaction mixture immediately turned brown. Stirring was continued for 15 min at 0°C. Then, the solution was cooled to -100 °C and 56.6 mmol of H₂NMe (4.92 ml of a 40% aqueous solution) was added dropwise. The cold solution, which turned yellow, was extracted immediately with three 200-ml portions of a saturated aqueous NaHCO₃ solution. The yellow organic layers were combined and the solvent was evaporated in vacuo. The brown-yellow residue was dissolved in 100 ml of pentane and chromatographed at -40 °C with pentane/CH₂Cl₂ (5:1) on silica gel. First, a pale-yellow band ([M(CO)₆]) was eluted. The following yellow band gave, after removal of the solvent in vacuo, complexes 14a, b as analytically pure yellow powders.

14a: Yield: 11.2 g [83%, based on W(CO)₆], m.p. 71 °C. – IR (pentane): v(CO) = 2065 cm⁻¹ w, 1977 w, 1945 s, 1932 sh, 1922 sh. – ¹H NMR: δ = 0.28 (s, 9H, SiCH₃), 3.28 (d, *J* = 5.1 Hz, 3H, NCH₃), 8.68 (br. s, 1 H, NH). – ¹³C NMR: δ = -0.73 (SiCH₃), 39.24 (NCH₃), 104.66 (C_β), 137.09 (C_α), 198.25 [¹*J*(WC) = 128.3 Hz, *cis*-CO], 203.72 [¹*J*(WC) = 129.0 Hz, *trans*-CO], 235.73 [¹*J*(WC) = 85.3 Hz, W=C]. – MS (70 eV); *mlz* (%): 463 (22) [M⁺ (¹⁸⁴W, ²⁸Si)], 407 (49), 379 (42), 351 (66), 323 (100) [M⁺ – *n* CO, *n* = 2–5]. – C₁₂H₁₃NO₅SiW (463.2): calcd. C 31.12, H 2.83, N 3.02; found C 31.07, H 2.81, N 2.99.

14b: Yield: 7.87 g [82%, based on Cr(CO)₆], m.p. 47 °C. – IR (pentane): v(CO) = 2058 cm⁻¹ w, 1982 w, 1949 s, 1940 sh, 1924 sh. – ¹H NMR: δ = 0.29 (s, 9H, SiCH₃), 3.38 (d, *J* = 5.0 Hz, 3H, NCH₃), 8.77 (br. s, 1H, NH). – ¹³C NMR: δ = -0.71 (SiCH₃), 39.54 (NCH₃), 102.31 (C_β), 140.71 (C_α), 217.05 (*cis*-CO), 223.41 (*trans*-CO), 259.71 (Cr=C). – MS (70 eV); *m/z* (%): 331 (4) [M⁺ (⁵²Cr, ²⁸Si)], 275 (3), 247 (5), 219 (76), 191 (100) [M⁺ – *n* CO, *n* = 2-5]. - C₁₂H₁₃CrNO₅Si (331.3): calcd. C 43.50, H 3.95, N 4.23; found C 43.60, H 4.04, N 4.26.

Pentacarbonyl[(1-methylamino)propynylidene]tungsten (15a) and -chromium (15b): 3.44 mmol (0.20 g) of KF was added to a solution of 15.00 mmol of 14a (6.95 g) or 14b (4.97 g) in 80 ml of THF/ MeOH (1:1) and the mixture was stirred for 10 min at room temp. Then, 200 ml of CH_2Cl_2 was added and the yellow solution was extracted with three 150 ml portions of a saturated aqueous NaHCO₃ solution. The yellow organic layers were combined and the solvent was evaporated in vacuo. The yellow residue was dissolved in 60 ml of pentane and chromatographed at -40 °C on silica gel with pentane/CH₂Cl₂ [5:1 (15a), 4:1 (15b)]. The yellow band was collected. Removal of the solvent afforded 15a, b as analytically pure yellow powders.

15a: Yield: 3.81 g (65%, based on **14a**), m.p. 90 °C (dec.). – IR (pentane): v(CO) = 2066 cm⁻¹ w, 1976 w, 1939 s, 1926 sh. – ¹H NMR: δ = 3.32 (d, *J* = 5.1 Hz, 3 H, NCH₃), 5.70 (s, 1H, C=CH), 8.87 (br. s, 1H, NH). – ¹³C NMR: δ = 39.44 (NCH₃), 84.58 (C_β), 114.72 (C_α), 198.00 [¹*J*(WC) = 127.0 Hz, *cis*-CO], 203.51 [¹*J*(WC) = 128.6 Hz, *trans*-CO], 236.00 [¹*J*(WC) = 86.8 Hz, W=C]. – MS (70 eV); *m*/*z* (%): 391 (33) [M⁺ (¹⁸⁴W)], 335 (31), 307 (57), 279 (95), 251 (100) [M⁺ – *n* CO, *n* = 2–5]. – C₉H₅NO₅W (391.0): calcd. C 27.65, H 1.29, N 3.58; found C 27.61, H 1.33, N 3.55.

15b: Yield: 2.45 g (63%, based on **14b**), m.p. 84 °C (dec.). – IR (pentane): v(CO) = 2060 cm⁻¹ w, 1986 w, 1952 s, 1929 sh. – ¹H NMR: δ = 3.42 (d, *J* = 4.9 Hz, 3 H, NCH₃), 5.97 (s, 1 H, C=CH), 8.96 (br. s, 1 H, NH). – ¹³C NMR: δ = 39.67 (NCH₃), 82.28 (C_β), 118.22 (C_α), 216.79 (*cis*-CO), 223.18 (*trans*-CO), 260.26 (Cr=C). – MS (70 eV); *mlz* (%): 259 (8) [M⁺ (⁵²Cr)], 203 (4), 175 (10), 147 (19), 119 (93) [M⁺ – *n* CO, *n* = 2–5], 52 (100) [Cr⁺]. – C₉H₅CrNO₅ (259.1): calcd. C 41.71, H 1.94, N 5.41; found C 41.72, H 2.04, N 5.39.

Pentacarbonyl[(1-methylamino-3-tributylstannyl)]propynylidene]tungsten (16a) and -chromium (16b): A solution of 5.00 mmol of 15a (1.96 g) or 15b (1.30 g) and 5.00 mmol (1.81 g) of Bu₃SnNEt₂ in 20 ml of toluene was stirred for 30 min at room temp. Then, the solvent was removed in vacuo, the yellow residue was dissolved in 20 ml of pentane and chromatographed on silica gel at -30 °C. With pentane/CH₂Cl₂ (5:1) a yellow band containing 16a or 16b was eluted. After removal of the solvent in vacuo, complexes 16a, b were obtained as analytically pure yellow oils.

16a: Yield: 0.71 g (21%, based on **15a**). – IR (pentane): v(CO) =2064 cm⁻¹ w, 1975 w, 1942 s, 1920 sh. - ¹H NMR: $\delta = 0.91$ (t, J = 7.2 Hz, 9 H, CH₂CH₃), 1.08-1.14 (m, 6 H, SnCH₂), 1.28-1.42 (m, 6H, SnCH₂CH₂), 1.54-1.66 (m, 6H, CH₂CH₃), 3.28 (d, J =5.0 Hz, 3H, NCH₃), 8.61 (br. s, 1H, NH). - ¹³C NMR: δ = 11.47 $[{}^{1}J({}^{119}SnC, {}^{117}SnC) = 377.5 Hz, 361.37 Hz, SnCH_{2}], 13.56$ (CH_2CH_3) , 26.90 $[^2J(^{117/119}SnC) = 59.2 \text{ Hz}$, SnCH₂CH₂], 28.86 $[{}^{3}J({}^{117/119}SnC) = 24.7 Hz, CH_{2}CH_{3}], 38.80 (NCH_{3}), 111.04 [{}^{2}J$ $(^{117/119}SnC) = 36.8 \text{ Hz}, C_{\beta}$, 139.90 $[^{1}J(^{119}SnC, ^{117}SnC) = 231.3 \text{ Hz},$ 221.7 Hz, C_{α}], 198.53 [¹J(WC) = 127.0 Hz, *cis*-CO], 203.80 $[^{1}J(WC) = 130.0 \text{ Hz}, trans-CO], 235.27 [^{1}J(WC) = 85.5 \text{ Hz}, W=C].$ - MS (70 eV); m/z (%): 681 (24) [M⁺ (¹⁸⁴W, ¹²⁰Sn)], 625 (50) [M⁺ - 2 CO], 569 (22) [M⁺ - 4 CO], 541 (57) [M⁺ - 5 CO], 427 (100) $[M^+ - 4 CO - 2 Bu]$, 398 (40) $[M^+ - 5 CO - 2 Bu]$, 371 (29) $[M^+ - 5 CO - 2 Bu - C_4 H_8]$. - $C_{21}H_{31}NO_5SnW$ (680.0): calcd. C 37.09, H 4.59, N 2.06; found C 37.24, H 4.68, N 2.23.

16b: Yield: 0.38 g (14%, based on **15b**). – IR (pentane): $v(CO) = 2056 \text{ cm}^{-1}$ w, 1980 w, 1946 s, 1921 sh. – ¹H NMR: $\delta = 0.91$ (t, $J = 7.2 \text{ Hz}, 9 \text{ H}, \text{CH}_2\text{C}H_3$), 0.97–1.18 (m, 6 H, SnCH₂), 1.28–1.48 (m, 6 H, SnCH₂CH₂), 1.54–1.66 (m, 6 H, CH₂CH₃), 3.37 (d, $J = 5.0 \text{ Hz}, 3 \text{ H}, \text{NCH}_3$), 8.72 (br. s, 1 H, NH). – ¹³C NMR: $\delta = 11.47 [^{1}J(^{119}\text{SnC}, ^{117}\text{SnC}) = 378.9 \text{ Hz}, 361.7 \text{ Hz}, \text{SnCH}_2$], 13.57

	4a	5a	7a	10a
Empirical formula	C33H26NNiO6PW		C₁ ₇ H₁₁FeNO ₇ W	Ċ₁ ₇ H₁₁NO ₇ RuW
Formula mass	790.1	858.2	581.0	626.2
Crystal size [mm ³]	0.3 x 0.3 x 0.3	0.3 x 0.3 x 0.3	0.3 x 0.3 x 0.3	0.25 x 0.25 x 0.25
Crystal system	monoclinic	triclinic	monoclinic	monoclinic
Space group	P2 ₁ In	PĪ	P2 ₁ /c	P21/c
a [Å]	12.833(1)	9.133(3)	11.126(1)	11.233(1)
b [Å]	16.379(1)	11.936(3)	8.832(1)	8.833(1)
c [A]	15.951(1)	17.711(5)	19.154(2)	19.191(2)
α [deg]		81.00(1)		
β [deg]	109.69(1)	75.58(1)	97.75(1)	96.15(1)
γ [deg]		74.58(2)		
V [Å ³]	3156.7(4)	1798.2(9)	1865.9(3)	1893.5(3)
Z	4	2	4	4
Density [g·cm ⁻³]	1.662	1.585	2.068	2.197
Temperature [K]	244	216	236	217
Absorption [mm ⁻¹]	4.408	3.918	7.109	7.022
Min/max transm	0.2433/0.2962	0.3444/0.5817	0.0756/0.1442	0.1052/0.1386
Indepdt refins	6888	7859	4077	4140
Obsd refins $(F > 4\sigma(F))$	5086	6795	3248	3398
F(000)	1552	856	1104	1176
index range	+16, +20, ±20	+11, ±15, ±22	+14, +11, ±24	+14, +11, ±24
Params refined	379	406	244	244
Final R	0.0372	0.0301	0.0333	0.0341
Final R _w	0.0407	0.0335	0.0362	0.0371
Largest diff peak/hole [e·Å ⁻³]	+1.07/-0.58	+1.00/-0.93	+1.16/-1.34	+0.84/-0.79

Table 1. Crystallographic data for 4a, 5a, 7a and 10a

 $(SnCH_2CH_3)$, 26.92 [²J(^{117/119}SnC) = 59.1 Hz, SnCH₂CH₂], 28.89 $[{}^{3}J({}^{117/119}SnC) = 24.6 \text{ Hz}, CH_{2}CH_{3}], 39.10 (NCH_{3}), 108.79 [{}^{2}J$ $(^{117/119}SnC) = 37.9 \text{ Hz}, C_{\beta}, 142.97 [^{1}J(^{117/119}SnC) = 229.7, C_{\alpha}],$ 217.33 (cis-CO), 223.57 (trans-CO), 258.53 (Cr=C). - MS (70 eV); m/z (%): 549 (7) [M⁺ (⁵²Cr, ¹²⁰Sn)], 493 (10), 465 (4), 437 (12), 409 (41) $[M^+ - n CO, n = 2-5]$, 295 (35) $[M^+ - 5 CO - 2 Bu]$, 239 (100) $[M^+ - 5 CO - 2 Bu - C_4H_8]$, 52 (100) $[Cr^+]$. C₂₁H₃₁CrNO₅Sn (548.2): caled. C 46.01, H 5.70, N 2.56; found C 46.11, H 5.85, N 2.50.

Pentacarbonyl{3-[dicarbonyl(η^5 -cyclopentadienyl)ferrio]-1-methylaminopropynylidene}tungsten (17a) and -chromium (17b): A solution of 3.00 mmol of 16a (2.04 g) or 16b (1.65 g), 3.00 mmol (0.91 g) of $[IFe(CO)_2Cp]$ and 0.30 mmol (0.08 g) of $[Cl_2Pd(MeCN)_2]$ in 10 ml of toluene was stirred for 2 d at room temp. Then, the solvent of the dark-brown solution was evaporated in vacuo, the residue was dissolved in 6 ml of Et₂O and chromatographed with pentane/ Et₂O [5:3 (17a), 3:2 (17b)] at -40 °C on silica gel. First, a narrow yellow band containing 16a or 16b, and then an intensely yellow band containing 17a or 17b was eluted. Removal of the solvent in vacuo afforded complexes 17a, b as analytically pure yellow solids.

17a: Yield: 1.38 g (81%, based on 16a), m.p. 105°C (dec.). - IR (Et₂O): $v(CO) = 2068 \text{ cm}^{-1} \text{ w}$, 2034 m, 2003 m, 1967 w, 1922 s, 1906 sh; v(C=C) = 2062 cm⁻¹ w. $- {}^{1}H$ NMR: $\delta = 3.21$ (d, J =4.8 Hz, 3 H, NCH₃), 5.13 (s, 5 H, C₅H₅), 8.07 (br. s, 1 H, NH). -¹³C NMR: $\delta = 37.36$ (NCH₃), 85.73 (C₅H₅), 126.52 (C₆), 156.66 (C_{α}) , 199.57 [¹J(WC) = 127.1 Hz, *cis*-WCO], 204.35 (*trans*-WCO), 210.91 [FeCO], 231.51 [${}^{1}J(WC) = 83.5$ Hz, W=C]. - MS (70 eV); mlz (%): 567 (21) [M⁺ (¹⁸⁴W, ⁵⁶Fe)], 539 (13), 511 (12), 483 (30), 455 (23), 427 (49), 399 (100), 371 (68) $[M^+ - n CO, n = 1-7]$. C16H9FeNO7W (567.0): calcd. C 33.90, H 1.60, N 2.47; found C 33.88, H 1.80, N 2.67.

17b: Yield: 0.89 g (68%, based on 16b), m.p. 105 °C (dcc.). - IR (Et₂O): $v(CO) = 2068 \text{ cm}^{-1} \text{ w}$, 2033 m, 2003 m, 1969 w, 1926 s, 1908 sh; v(C≡C) = 2055 cm⁻¹ w. - ¹H NMR (CDCl₃, -40 °C): $\delta = 3.32$ (d, J = 3.4 Hz, 3 H, NCH₃), 5.20 (s, 5 H, C₅H₅), 8.26 (br. s, 1 H, NH). $- {}^{13}$ C NMR: $\delta = 37.73$ (NCH₃), 85.71 (C₅H₅), 124.37 (C_β), 159.44 (C_α), 210.94 (FeCO), 218.37 (cis-CrCO), 223.97 (transCrCO), 252.50 (Cr=C). – MS (70 eV); m/z (%): 435 (2) [M⁺ (⁵²Cr, ⁵⁶Fe)], 407 (0.4), 379 (5), 351 (1), 323 (8), 295 (16), 267 (36), 239 (61) $[M^+ - n CO, n = 1-7]$, 121 (26) $[Fe(C_5H_5)^+]$, 52 (100) $[Cr^+]$. C₁₆H₉CrFeNO₇ (435.1): calcd. C 44.17, H 2.08, N 3.22; found C 44.07, H 2.14, N 3.27.

X-ray Structural Analyses of 4a, 5a, 7a and 10a: Single crystals were grown from pentane/Et₂O [2:5 (4a), 1:4 (7a)] or pentane/ CH₂Cl₂ [1:4 (5a), 1:3 (10a)], respectively, and mounted in a glass capillary. All crystal data were collected on a Siemens P4 diffractometer (Wyckoff scan, scan range $4^{\circ} < 2\theta < 54^{\circ}$, scan speed variable, $4-30^{\circ} \text{ min}^{-1}$ in ω) with a graphite monochromator (Mo- K_{α} , $\lambda = 0.71073$ Å). Semi-empirical absorption corrections were employed (ψ -scans with 10 reflections). The structures were solved with Patterson methods using the Siemens SHELXTL PLUS program package. The positions of the hydrogen atoms were calculated by assuming ideal geometry ($d_{C-11} = 0.96$ Å) and their coordinates were refined together with the attached carbon atoms as a "riding model". The positions of all other atoms were refined anisotropically by full-matrix least-squares techniques. Complete lists of atom coordinates and thermal parameters were deposited^[32].

^[4] W. Weng, A. M. Arif, J. A. Gladysz, Angew. Chem. 1993, 105, 937-939; Angew. Chem. Int. Ed. Engl. 1993, 32, 891-892.

^[1] Recent reviews: ^[1a] W. Beck, B. Niemer, M. Wieser, Angew. Chem. 1993, 105, 969–996; Angew. Chem. Int. Ed. Engl. 1993, 32, 923–949. – ^[1b] H. Lang, Angew. Chem. 1994, 106, 569–572; Angew. Chem. Int. Ed. Engl. 1994, 33, 547–550. – ^[1e] U. H. F. Bunz, Angew. Chem. **1996**, 108, 1047–1049; Angew. Chem. Int. Ed. Engl. **1996**, 35, 969–971. – ^[1d] J. S. Schumm, Chem. Int. Ed. Engl. 1770, 35, 767 714. D. L. Pearson, J. M. Tour, Angew. Chem. 1994, 106, 1445-1448; Angew. Chem. Int. Ed. Engl. 1994, 33, 1360-1363. Weng, T. Bartik, J. A. Gladysz, Angew. Chem. 1994, 106, 2269-2272; Angew. Chem. Int. Ed. Engl. 1994, 33, 2199-2202. ^[If] T. Bartik, B. Bartik, M. Brady, R. Dembinski, J. A. Gladysz, Angew. Chem. 1996, 108, 467-469; Angew. Chem. Int. Ed.

Engl. **1996**, *35*, 414–417. W. Weng, J. A. Ramsden, A. M. Arif, J. A. Gladysz, *J. Am.* [2] Chem. Soc. 1993, 115, 3824-3825. B. E. Woodworth, J. L. Templeton, J. Am. Chem. Soc. 1996,

^[3] 118, 7418-7419.

FULL PAPER

- ^[5] A. Rahm, W. D. Wulff, A. L. Rheingold, Organometallics 1993, 12, 597-599.
- ^[6] ^[6a] E. O. Fischer, S. Fontana, J. Organomet. Chem. 1972, 40, 159-162. - [6b] H. G. Raubenheimer, E. O. Fischer, J. Or-ganomet. Chem. 1975, 91, C23-C26. - [6c] E. O. Fischer, T. Selmayr, F. R. Kreißl, Ú. Schubert, Chem. Ber. 1977, 110, 2574-2583.
- ^[7] See e.g. ^[7a] G. Erker, Angew. Chem. 1989, 101, 411-426; Angew. Chem. Int. Ed. Engl. 1989, 28, 397-412 and literature cited therein. - ^[7b] P. M. Fritz, J. Breimair, B. Wagner, W. Beck, J. Organomet. Chem. 1992, 426, 434-350 and literature cited therein.
- ^[8] J. K. Stille, Angew. Chem. 1986, 98, 504-519; Angew. Chem. Int. Ed. Engl. 1986, 25, 508-523.
- [9] M. I. Bruce, B. C. Hall, N. N. Zaitseva, B. W. Skelton, A. H. White, J. Organomet. Chem. 1996, 522, 307-310.
- ^[10] T. Blackmore, M. I. Bruce, F. G. A. Stone, J. Chem. Soc. (A) 1971, 2376-2382.
- [11] For Michael addition of amines to the C=C bond of alkynyl-carbene complexes see e.g.: [11a] E. O. Fischer, H. J. Kalder, J. Organomet. Chem. 1977, 131, 57-64. [11b] R. Aumann, P. Hinterding, Chem. Ber. 1993, 126, 421-427. [11c] F. Stein, M. Duetsch, E. Pohl, R. Herbst-Irmer, A. de Meijere, Organome-tallics 1993, 12, 2556–2564. – ^[11d] A. de Meijere, Pure Appl. Chem. 1996, 68, 61-72 and literature cited therein.
- ^[12] H. Yamazaki, T. Nishido, Y. Matsumoto, S. Sumida, N. Hagihara, J. Organomet. Chem. 1966, 6, 86-91.
- ^[13] M. Wada, K. Oguro, Y. Kawasaki, J. Organomet. Chem. 1979, 178, 261-271.
- ^[14] B. Cetinkaya, M. F. Lappert, J. McMeeking, D. Palmer, J. Organomet. Chem. 1972, 34, C37-C40.
- [15] M. I. Bruce, M. G. Humphrey, J. G. Matisons, S. K. Roy, A. G. Swincer, Aust. J. Chem. 1984, 37, 1955-1961.

- ^[16] M. I. Bruce, A. G. Swincer, Aust. J. Chem. 1980, 33, 1471-1483.
- ^[17] N. A. Ustynyuk, V. N. Vinogradova, P. V. Petrovskii, Bull. Acad. Sci. USSR. Div. Chem. Sci. (Engl. Transl.) 1982, 31, 606-608.
- ^[18] M. P. Gamasa, J. Gimeno, E. Lastra, M. Lanfranchi, A. Tiripicchio, J. Organomet. Chem. 1991, 405, 333-345.
- ^[19] J. T. Guy Jr., D. W. Bennett, Transition Met. Chem. 1984, 9, 43 - 46.
- ^[20] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2 1987, S1-S19.
- [21] R. Aumann, B. Jasper, R. Fröhlich, Organometallics 1996, 15, 1942-1950.
- ^[22] G. Huttner, H. Lorenz, Chem. Ber. 1975, 108, 1864-1870.
- ^[23] R. Goddard, J. Howard, P. Woodward, J. Chem. Soc., Dalton Trans. **1974**, 2025–2027.
- ^[24] J. M. Wisner, T. J. Bartczak, J. A. Ibers, Inorg. Chim. Acta 1985, 100, 115-123.
- ^[25] K. B. Barnett, J. Chem. Educ. 1974, 51, 422-423
- [26] J. R. Moss, B. L. Shaw, J. Chem. Soc. (A) 1966, 1793-1795.
 [27] W. P. Fchlhammer, W. A. Herrmann, K. Öfele in Handbuch der Präparativen Anorganischen Chemie (Ed.: G. Brauer), vol. 3, 3rd
- ¹²⁸ A. Eisenstadt, R. Tannenbaum, A. Efraty, J. Organomet. Chem. 1981, 221, 317-321.
 ¹²⁹ M. I. Bruce, C. Hameister, A. G. Swincer, R. C. Wallis, S. D.
- Ittel, Inorg. Synth. 1982, 21, 78-84.
- ^[30] B. B. Wayland, R. F. Schramm, Inorg. Chem. 1969, 8, 971-976. ^[31] K. Sisido, S. Kozima, J. Org. Chem. 1962, 27, 4051-4052.
- ^[32] Further details of the crystal structure investigations are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, on quoting the depository numbers CSD-406055 (4a), -406056 (5a), -406057 (7a), -406058 (10a).

[96247]